Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Microbiol ; 64(1): 125-132, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468728

ABSTRACT

The emergence of multidrug resistance in bacterial infections has limited the use of antibiotics. Helping the action of antibiotics is one of the needs of the day. Today, the biosynthesis of nanoparticles (NPs) is considered due to its safety and cost-effectiveness. In this study, we investigated the effect of biosynthesized silver nanoparticles (AgNPs) by Berberine plant extract against standard strains of multidrug-resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa. Utilized UV-Vis, FTIR, FESEM/EDX, XRD, DLS, and Zeta potential techniques to confirm the biosynthesis of NPs. Then, disk diffusion agar (DDA) and minimum inhibitory concentration (MIC) tests were performed using common classes of standard antibiotics and AgNPs on the mentioned bacteria. The synergistic action between AgNPs and antibiotics was evaluated by the checkerboard method. First, we obtained the confirmation results of the biosynthesis of AgNPs. According to the DDA test, both standard bacterial strains were sensitive to NPs and had an inhibition zone. Also, the MIC values showed that AgNPs inhibit the growth of bacteria at lower concentrations than antibiotics. On the other hand, the results obtained from checkerboard monitoring showed that AgNPs, in combination with conventional antibiotics, have a synergistic effect. The advantage of this study was comparing the antibacterial effect of AgNPs alone and mixed with antibiotics. The antibacterial sensitivity tests indicated that the desired bacterial strains could not grow even in low concentrations of AgNPs. This property can be applied in future programs to solve the drug resistance of microorganisms in bacterial diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01136-y.

2.
J Basic Microbiol ; 63(2): 210-222, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36482013

ABSTRACT

The problems of drug resistance in bacteria have become one of the daily challenges of the clinical treatment of patients, which inevitably forces us to use agents other than common antibiotics. Among these, we can take help from different properties and applications of nanoparticles (NPs). In this work, we evaluate the antibacterial activity of biosynthesized selenium nanoparticles (SeNPs) against standard strains of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. The production of biosynthesized SeNPs was proved by ultraviolet-visible, Fourier transform infrared, X-ray diffractometer, Field Emission Scanning Electron Microscopy, Dynamic light scattering, and Zeta potential methods. The cytotoxicity effect of SeNPs was investigated by MTT assay. Disk diffusion agar (DDA) and minimum inhibitory concentration (MIC) tests were performed on the mentioned bacteria using different classes of standard antibiotics and SeNPs separately. The impact of SeNPs combined with the desired antibiotics for better treatment of these infections was evaluated by checkerboard assay to determine the synergism effect. After the confirmation results based on the biosynthesis of SeNPs, both standard bacterial strains were susceptible to SeNPs and had a zone of inhibition using the DDA test. Also, the results of MICs showed that biosynthesized SeNPs in lower concentrations than antibiotics cause no growth of bacteria. On the other hand, according to the checkerboard assay, SeNPs had a synergistic effect with conventional antibiotics. The antibacterial sensitivity tests demonstrated the inhibition of bacterial growth in the presence of lower concentrations of SeNPs than common antibiotics. This property can be exerted in future applications to solve the drug resistance obstacle of microorganisms in bacterial diseases.


Subject(s)
Acinetobacter baumannii , Nanoparticles , Nepeta , Selenium , Humans , Selenium/pharmacology , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...